Fast and Slow Oscillations Recruit Molecularly-Distinct Subnetworks of Lateral Hypothalamic Neurons In Situ

نویسندگان

  • Christin Kosse
  • Denis Burdakov
چکیده

Electrical signals generated by molecularly-distinct classes of lateral hypothalamus (LH) neurons have distinct physiological consequences. For example, LH orexin neurons promote net body energy expenditure, while LH non-orexin neurons [VGAT, melanin-concentrating hormone (MCH)] drive net energy conservation. Appropriate switching between such physiologically-opposing LH outputs is traditionally thought to require cell-type-specific chemical modulation of LH firing. However, it was recently found that, in vivo, the LH neurons are also physiologically exposed to electrical oscillations of different frequency bands. The role of the different physiological oscillation frequencies in firing of orexin vs non-orexin LH neurons remains unknown. Here, we used brain-slice whole-cell patch-clamp technology to target precisely-defined oscillation waveforms to individual molecularly-defined classes LH cells (orexin, VGAT, MCH, GAD65), while measuring the action potential output of the cells. By modulating the frequency of sinusoidal oscillatory input, we found that high-frequency oscillations (γ, ≈30-200 Hz) preferentially silenced the action potential output orexinLH cells. In contrast, low frequencies (δ-θ, ≈0.5-7 Hz) similarly permitted outputs from different LH cell types. This differential control of orexin and non-orexin cells by oscillation frequency was mediated by cell-specific, impedance-unrelated resonance mechanisms. These results substantiate electrical oscillations as a novel input modality for cell-type-specific control of LH firing, which offers an unforeseen way to control specific cell ensembles within this highly heterogeneous neuronal cluster.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Situ Voltammetric Determination of Promethazine on Carbon Paste Electrode Modified with Nano-sized Molecularly Imprinted Polymer

A precise and simple in-situ voltammetric measurement of promethazine, based on the nano sized molecularly imprinted polymer (nano-MIP) was introduced. The nano-MIP was synthesized utilizing vinyl benzene and Divinylbenzene as the functional monomer and cross-linker respectively, and via the micro-emulsion polymerization method in silicon oil. The MIP particles were then embedded in a carbon pa...

متن کامل

Neuropeptide Y cells represent a distinct glucose-sensing population in the lateral hypothalamus.

The maintenance of appropriate glucose levels is necessary for survival. Within the brain, specialized neurons detect glucose fluctuations and alter their electrical activity. These glucose-sensing cells include hypothalamic arcuate nucleus neurons expressing neuropeptide Y (NPY) and lateral hypothalamic area (LHA) neurons expressing orexin/hypocretins (ORX) or melanin-concentrating hormone (MC...

متن کامل

Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice.

Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings...

متن کامل

Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons.

Autonomic and limbic information is integrated within the lateral hypothalamus (LH), and excitability of LH neurons is important in the control of feeding and behavioral arousal. Despite the prominent expression of P2X-type ATP receptors throughout the hypothalamus, the role of ATP in LH excitability is not known. Perforated-patch-clamp recordings of synaptically coupled neurons from both embry...

متن کامل

Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization.

During sleep, the electroencephalogram exhibits synchronized slow waves that desynchronize when animals awaken [desynchronized states (DSs)]. During slow-wave states, the membrane potentials of cortical neurons oscillate between discrete depolarized states ("Up states") and periods of hyperpolarization ("Down states"). To determine the role of corticothalamic loops in generating Up/Down oscilla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2018